1)

Which of the following is an even number?

A)
$$2^{0} + 4^{3}$$
 B) $13^{2} + 15^{2} - 23^{2}$ C) $2^{5} - 7^{2} - 4^{3}$
D) $7^{3} - 4^{6} + 5^{5}$ E) $6^{5} + 7^{5}$

Solution:

Let's examine the options one by one.

A) $2^{0} + 4^{3}$

- $2^0 \rightarrow$ The zeroth power of any number is 1. Therefore, it is odd.
- $4^3 \rightarrow$ All positive powers of even numbers are even.

$$\Rightarrow 2^0 + 4^3 \Rightarrow 0 + E = 0$$

 \Rightarrow The number in option A is odd.

B) $13^2 + 15^2 - 23^2 \Rightarrow$ All natural number powers of odd numbers are odd.

 $\Rightarrow 0 + 0 - 0 = 0$ $\Rightarrow \text{ The number in option B is odd.}$

- C) $2^5 7^2 4^3 \Rightarrow E O E = O$ \Rightarrow The number in option C is odd.
- D) $7^3 4^6 + 5^5 \Rightarrow O E + O = E$ \Rightarrow The number in option D is even.
- E) $6^5 + 7^5 \implies E + O = O$ \implies The number in option E is odd. Correct Answer: D

2)

Assuming a is an integer and that 7a + 4 is an even number, which of the following is an odd number?

A)
$$a + 4$$
 B) $5a - 2$ C) $a^2 + a$
D) $a^5 + 2$ E) $a^5 + 4a - 3$

Solution:

Since the expression 7a + 4 is even, we can deduce information about the value of a. $7a + 4 = E \Longrightarrow 7a + E = E \Longrightarrow 7a = E \Longrightarrow a$ is even. Let's examine the options one by one.

A)
$$a + 4 \Longrightarrow E + E = E$$

B) $5a - 2 \Longrightarrow O.E - E \Longrightarrow E - E = E$
C) $a^2 + a \Longrightarrow E^2 + E \Longrightarrow E + E = E$
D) $a^5 + 2 \Longrightarrow E^5 + E \Longrightarrow E + E = E$
E) $a^5 + 4a - 3 \Longrightarrow E^5 + E.E - O \Longrightarrow E + E - O = O$
Correct Answer: E

3)

Considering that a, b, c, m, and n are all positive integers and that

 $(a+b)^{c} = 2m + 3 ve (b.c)^{a} = 2n$

which of the following is definitely true?

- A) If a is an even number, then c is an even number.
- B) If b is an even number, then c is an odd number.
- C) b is an even number.
- D) a is an odd number.
- E) If a is an odd number, then c is an odd number.

Solution:

The number "2m + 3" is a single number, and "2n" is an even number. Therefore,

 $(a + b)^{c} = 0$ and $(b.c)^{a} = E$ $(a + b)^{c} = 0 \implies a + b = 0$ $(O^{n} = 0)$ \implies One of the numbers a and b must be even, and the other must be odd. $(b.c)^{a} = E \implies b.c = E (E^{n} = E)$

 \Rightarrow At least one of the numbers b and c must be even.

In this case,

If a is even, then b is odd, and c is even.

If a is odd, then b is even, and c can be either odd or even

Only option A specifies a condition that meets these criteria; the other options do not provide definitive condition.

Correct Answer: A

5)

Given that a, b, and c are even numbers, which of the following is always an even number?

A)
$$\frac{a+b-c}{2}$$
 B) $\frac{a+b+c}{2}$ C) $\frac{a+b}{2}+c$
D) $\frac{a.b.c}{2}$ E) $a+\frac{b-c}{2}$

4)

a, b, and c are all integers, and

$$\frac{a}{12} = 11.b.c$$

Which of the following is definitely an even number?

A) ac + b B) a + 2b C) $a^2 + b$ D) 2c - b E) a + b + c

Solution:

In the equation $\frac{a}{12} = 11.b.c$, when we move 12 to the other side $\Rightarrow a = 12.11.b.c$ Since 12 is even, a must be an even number. We don't have a definite piece of information about b and c. Let's examine the options :

A) $ac + b \Rightarrow E.b + b = E + b \Rightarrow$ There is no certainty B) $a + 2b \Rightarrow E + E.b \Rightarrow E + E = E \Rightarrow$ It is definitely even. C) $a^2 + b \Rightarrow E^2 + b \Rightarrow E + b \Rightarrow$ There is no certainty D) $2c - b \Rightarrow E.c - b \Rightarrow E - b \Rightarrow$ There is no certainty E) $a + b + c \Rightarrow E + b + c \Rightarrow$ There is no certainty Correct Answer: B

Solution:

Since a, b, and c are even numbers, we can express them as follows: a=2x, b=2y, c=2zNow, let's examine the options:

A)
$$\frac{a+b-c}{2} \Rightarrow \frac{2x+2y-2z}{2} = \frac{2(x+y-z)}{2} = x+y-z$$

 \Rightarrow There is no certaint y
B) $\frac{a+b+c}{2} \Rightarrow \frac{2x+2y+2z}{2} = \frac{2(x+y+z)}{2} = x+y+z$
 \Rightarrow There is no certaint y
C) $\frac{a+b}{2} + c \Rightarrow \frac{2x+2y}{2} + 2z = \frac{2(x+y)}{2} + 2z = x+y+E$
 \Rightarrow There is no certaint y
D) $\frac{a.b.c}{2} \Rightarrow \frac{2x.2y.2z}{2} \Rightarrow 4x.y.z \Rightarrow E$
 \Rightarrow It is definitely even.
E) $a + \frac{b-c}{2} \Rightarrow 2x + \frac{2y-2z}{2} \Rightarrow E + \frac{2(y-z)}{2} \Rightarrow E + y-z$
 \Rightarrow There is no certaint y
C) $\frac{a+b-c}{2} \Rightarrow 2x + \frac{2y-2z}{2} \Rightarrow E + \frac{2(y-z)}{2} \Rightarrow E + y-z$