1)

Given the statements:

 $a^{3}.b < 0$ $b^{2}.c > 0$

Which of the following is always true?

A)
$$a.b > 0$$
 B) $a.c > 0$ C) $b > 0$
D) $b.c < 0$ E) $a^2.c > 0$

Solution:

The product of numbers with the same sign is always positive, and the product of numbers with different signs is negative.

Even-degree expressions are always positive.

Odd – degree expressions take on the sign of the base.

 $a^{3}.b < 0 \implies a.b < 0 \implies a$ and b have opposite signs $b^{2}.c > 0 \implies (+).c > 0 \implies c$ is definitely positive. We cannot say anything about b.

Now let's examine the answer choices:

- A) a.b > 0 \Rightarrow Since a and b have opposite signs, their product will always be negative.
- B) a.c < 0 ⇒ We know that c is positive, but we don't have information about the sign of a, so we cannot make a definite inference.
- C) $b > 0 \implies$ We don't have enough information about the sign of b.
- D) b.c < 0 \Rightarrow We know that c is positive, but we don't have information about the sign of b, so we cannot make a definite inference.
- E) $a^2.c > 0 \Rightarrow$ Since a has an even degree, it is always positive, and we know that c is positive. Therefore, the product $a^2.c$ is always positive.

Correct Answer: E

Given that $a.b^2 > 0$ $b^5.c > 0$ $a^3.c < 0$

What are the signs of a, b, and c, respectively?

Solution:

 $a.b^2 > 0 \Rightarrow a.(+) > 0 \Rightarrow a \rightarrow + (b^2 \text{ is always positive.})$ $b^5.c > 0 \Rightarrow b.c > 0 \Rightarrow b \text{ and } c \text{ must have the same sign}$ $a^3.c < 0 \Rightarrow a.c < 0 \Rightarrow (+).c < 0 \Rightarrow c \rightarrow -$ In this case, the signs of a, b, and c should be , +,-, and-, respectively.

Correct Answer: C

3)

Given that,

a < 0 < b < cwhich of the following is definitely positive?

A)
$$(a-b).(b-c)$$

B) $(a+b).(b+c)$
C) $(a+c)(a-c)$
D) $(a-c).c$
E) $(a+c).b$

Solution:

If we examine the options one by one:

A)
$$(a-b) \cdot (b-c) \Rightarrow (-) \cdot (-)$$

(-) When a larger number is subtracted from a number, the result is always negative $\Rightarrow (+)$

B) $\binom{a+b}{(-)} \cdot \binom{b+c}{(+)} \Rightarrow$ Without knowing which of the absolute values of oppositely signed numbers is greater, we cannot determine whether the result is positive or negative. There is no certaint y. C) $\binom{a+c}{(-)} \binom{a-c}{(+)} \approx \binom{a+c}{(-)} \binom{-}{(+)} \Rightarrow$ There is no certaint y. D) $(a-c). \underset{(+)}{c} \Rightarrow (-).(+) \Rightarrow (-)$ E) $(a+c). \underset{(+)}{b} \Rightarrow (a+c)(+) \Rightarrow$ There is no certainty. Correct Answer: A

4)

Given that,

a+b>0

 $b-c\,{<}\,0$

which of the following is definitely true for a, b, and c?

A) If a is a positive number, then b is negative.

B) If a is a negative number, then c is positive.

C) Both a and b are definitely positive numbers.

D) c is definitely a positive number.

E) If b is a negative number, then c is positive.

Solution:

Looking at the inequalities

a+b>0

b-c < 0

let's try to interpret the question.

- $a+b>0 \implies$ we cannot directly determine the signs of a and b.
 - \Rightarrow If a is positive, then b can be negative or positive.
 - \Rightarrow If a is negative, then b must be positive.
- $b-c < 0 \implies b < c \implies$ we cannot directly determine the signs of b and c.
 - \Rightarrow If b is positive, then c must be positive.
 - \Rightarrow If b is negative, then c can be negative or positive.

Therefore, the only statement that can be definitively concluded is:

If a is negative, then b is positive, and c is also positive (-,+,+).

Correct answer: B

5)

Given that,

a < 0 < b < c

Which of the following is definitely negative?

A)
$$\frac{a+b}{b-c}$$
 B) $\frac{a+c}{a-c}$ C) $\frac{a+b}{c}$
D) $\frac{a-b}{b+c}$ E) $\frac{b-c}{a}$

Solution:

$$a < 0 < b < c \implies a < 0 < b < c \implies c < 0 < b < c$$

The sign rule in division is the same as in multiplication. Division of numbers with the same sign is positive; division of numbers with opposite sign is negative.

A)
$$\frac{a+b}{b-c} \Rightarrow \frac{\text{Not certain}}{(-)} \Rightarrow \text{There is no certainty.}$$

- B) $\frac{a+c}{a-c} \Rightarrow \frac{\text{Not certain}}{(-)} \Rightarrow \text{There is no certainty.}$
- C) $\frac{a+b}{c} \Rightarrow \frac{\text{Not certain}}{(+)} \Rightarrow \text{There is no certainty.}$

D)
$$\frac{a-b}{b+c} \Rightarrow \frac{(-)}{(+)} \Rightarrow (-)$$

E) $\frac{b-c}{a} \Rightarrow \frac{(-)}{(-)} \Rightarrow (+)$

Correct Answer: D