POSITIVE NEGATIVE NUMBERS

1)

Given the statements:

$$
\begin{aligned}
& a^{3} . b<0 \\
& b^{2} . c>0
\end{aligned}
$$

Which of the following is always true?
A) $a . b>0$
B) a.c >0
C) $b>0$
D) b.c <0
E) $a^{2} . c>0$

Solution:

The product of numbers with the same sign is always positive, and the product of numbers with different signs is negative.
Even-degree expressions are always positive.
Odd-deg ree expressions take on the sign of the base.
$a^{3} . b<0 \Rightarrow a . b<0 \Rightarrow a$ and b have opposite signs
$b^{2} . c>0 \Rightarrow(+) . c>0 \Rightarrow c$ is definitely positive.
We cannot say anything about b.
Now let's examine the answer choices:
A) $a . b>0 \Rightarrow$ Since a and b have opposite signs, their product will always be negative.
B) a.c $<0 \Rightarrow$ We know that c is positive, but we don't have inf ormation about the sign of a, so we cannot make a definite inf erence.
C) $\mathrm{b}>0 \Rightarrow$ We don't have enough inf ormation about the sign of b.
D) b.c $<0 \Rightarrow$ We know that c is positive, but we don't have information about the sign of b, so we cannot make a definite inf erence.
E) $a^{2} . c>0 \Rightarrow$ Since a has an even deg ree, it is always positive, and we know that c is positive. Therefore, the product $a^{2} . c$ is always positive.

Correct Answer: E

2)

Given that

$$
\begin{aligned}
& \text { a. } b^{2}>0 \\
& b^{5} . c>0 \\
& a^{3} . c<0
\end{aligned}
$$

What are the signs of a, b, and c, respectively ?
A),,++-
B),,+-+
C),,+--
D),,-+-
E),,+++

Solution:

a. $b^{2}>0 \Rightarrow a .(+)>0 \Rightarrow a \rightarrow+\left(b^{2}\right.$ is always positive.) $b^{5} . c>0 \Rightarrow b . c>0 \Rightarrow b$ and c must have the same sign $\mathrm{a}^{3} . \mathrm{c}<0 \Rightarrow \mathrm{a} . \mathrm{c}<0 \Rightarrow(+) . \mathrm{c}<0 \Rightarrow \mathrm{c} \rightarrow-$ In this case, the signs of a, b, and c should be, ,+- , and - , respectively.

Correct Answer: C

3)

Given that,

$$
a<0<b<c
$$

which of the following is definitely positive?
A) $(a-b) .(b-c)$
B) $(a+b) \cdot(b+c)$
C) $(a+c)(a-c)$
D) $(a-c) \cdot c$
E) $(a+c) . b$

Solution:

If we examine the options one by one:
A) $(a-b) .(b-c) \Rightarrow(-) .(-)$

$$
\begin{aligned}
& (-) \quad(-) \quad \Rightarrow(+) \\
&
\end{aligned}
$$

When a larger number is subtracted from a number, the result is always negative
B) $(\underset{(-)}{a}+\underset{(+)}{\mathrm{b}}) \cdot(\underset{(-)}{\mathrm{b}}+\underset{(+)}{\mathrm{c}}) \Rightarrow$ Without knowing which of the absolute values of oppositely signed numbers is greater, we cannot determine whether the result is positive or negative. There is no certaint y.
C) $\underset{(-)}{(a+}+\underset{(+)}{c})(a-c) \Rightarrow \underset{(-)}{(a+c)} \underset{(+)}{c})(-) \Rightarrow$ There is no certaint y.
D) $(\mathrm{a}-\mathrm{c}) \cdot \underset{(+)}{\mathrm{c}} \Rightarrow(-) \cdot(+) \Rightarrow(-)$
E) $\underset{(-)}{(a+} \underset{(+)}{c}) \cdot b \underset{(+)}{b} \Rightarrow \underset{(-)}{a}+\underset{(+)}{c})(+) \Rightarrow$ There is no certainty. Correct Answer: A

4)

Given that,

$$
\begin{aligned}
& a+b>0 \\
& b-c<0
\end{aligned}
$$

which of the following is definitely true for a, b, and c ?
A) If a is a positive number, then b is negative.
B) If a is a negative number, then c is positive.
C) Both a and b are definitely positive numbers.
D) c is definitely a positive number.
E) If b is a negative number, then c is positive.

Solution:

Looking at the inequalities
$a+b>0$
$b-c<0$
let's try to interpret the question.
$a+b>0 \Rightarrow$ we cannot directly determine the signs of a and b.
\Rightarrow If a is positive, then b can be negative or positive.
\Rightarrow If a is negative, then b must be positive.
$\mathrm{b}-\mathrm{c}<0 \Rightarrow \mathrm{~b}<\mathrm{c} \Rightarrow$ we cannot directly determine the signs of b and c.
\Rightarrow If b is positive, then c must be positive.
\Rightarrow If b is negative, then c can be negative or positive.

Therefore, the only statement that can be
definitively concluded is :
If a is negative, then b is positive, and c is also positive (-,+,+).

Correct answer: B

5)

Given that,

$$
a<0<b<c
$$

Which of the following is definitely negative?
A) $\frac{a+b}{b-c}$
B) $\frac{a+c}{a-c}$
C) $\frac{a+b}{c}$
D) $\frac{a-b}{b+c}$
E) $\frac{b-c}{a}$

Solution:

$$
\mathrm{a}<0<\mathrm{b}<\mathrm{c} \Rightarrow \underset{(-)}{\mathrm{a}}<0<\underset{(+)}{\mathrm{b}}<\underset{(+)}{\mathrm{c}}
$$

The sign rule in division is the same as in multiplication. Division of numbers with the same sign is positive; division of numbers with opposite sign is negative.
A) $\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}-\mathrm{c}} \Rightarrow \frac{\text { Not certain }}{(-)} \Rightarrow$ There is no certaint y .
B) $\frac{a+c}{a-c} \Rightarrow \frac{\text { Not certain }}{(-)} \Rightarrow$ There is no certaint y.
C) $\frac{a+b}{c} \Rightarrow \frac{\text { Not certain }}{(+)} \Rightarrow$ There is no certaint y .
D) $\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}+\mathrm{c}} \Rightarrow \frac{(-)}{(+)} \Rightarrow(-)$
E) $\frac{b-c}{a} \Rightarrow \frac{(-)}{(-)} \Rightarrow(+)$

Correct Answer: D

